Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(3): 517-532.e5, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36640763

RESUMO

The development of neuronal connectivity requires stabilization of dynamic axonal branches at sites of synapse formation. Models that explain how axonal branching is coupled to synaptogenesis postulate molecular regulators acting in a spatiotemporally restricted fashion to ensure branching toward future synaptic partners while also stabilizing the emerging synaptic contacts between such partners. We investigated this question using neuronal circuit development in the Drosophila brain as a model system. We report that epidermal growth factor receptor (EGFR) activity is required in presynaptic axonal branches during two distinct temporal intervals to regulate circuit wiring in the developing Drosophila visual system. EGFR is required early to regulate primary axonal branching. EGFR activity is then independently required at a later stage to prevent degradation of the synaptic active zone protein Bruchpilot (Brp). Inactivation of EGFR results in a local increase of autophagy in presynaptic branches and the translocation of active zone proteins into autophagic vesicles. The protection of synaptic material during this later interval of wiring ensures the stabilization of terminal branches, circuit connectivity, and appropriate visual behavior. Phenotypes of EGFR inactivation can be rescued by increasing Brp levels or downregulating autophagy. In summary, we identify a temporally restricted molecular mechanism required for coupling axonal branching and synaptic stabilization that contributes to the emergence of neuronal wiring specificity.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Axônios/fisiologia , Drosophila/genética , Receptores ErbB/metabolismo , Autofagia , Sinapses/fisiologia , Receptores de Peptídeos de Invertebrados/metabolismo
2.
PLoS Biol ; 18(12): e3000703, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33290404

RESUMO

The amyloid precursor protein (APP) is a structurally and functionally conserved transmembrane protein whose physiological role in adult brain function and health is still unclear. Because mutations in APP cause familial Alzheimer's disease (fAD), most research focuses on this aspect of APP biology. We investigated the physiological function of APP in the adult brain using the fruit fly Drosophila melanogaster, which harbors a single APP homologue called APP Like (APPL). Previous studies have provided evidence for the implication of APPL in neuronal wiring and axonal growth through the Wnt signaling pathway during development. However, like APP, APPL continues to be expressed in all neurons of the adult brain where its functions and their molecular and cellular underpinnings are unknown. We report that APPL loss of function (LOF) results in the dysregulation of endolysosomal function in neurons, with a notable enlargement of early endosomal compartments followed by neuronal cell death and the accumulation of dead neurons in the brain during a critical period at a young age. These defects can be rescued by reduction in the levels of the early endosomal regulator Rab5, indicating a causal role of endosomal function for cell death. Finally, we show that the secreted extracellular domain of APPL interacts with glia and regulates the size of their endosomes, the expression of the Draper engulfment receptor, and the clearance of neuronal debris in an axotomy model. We propose that APP proteins represent a novel family of neuroglial signaling factors required for adult brain homeostasis.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Drosophila/genética , Endossomos/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Morte Celular , Sobrevivência Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Mutação com Perda de Função/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia
3.
Nat Commun ; 11(1): 1325, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165611

RESUMO

Brain wiring is remarkably precise, yet most neurons readily form synapses with incorrect partners when given the opportunity. Dynamic axon-dendritic positioning can restrict synaptogenic encounters, but the spatiotemporal interaction kinetics and their regulation remain essentially unknown inside developing brains. Here we show that the kinetics of axonal filopodia restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses. Using 4D imaging in developing Drosophila brains, we show that filopodial kinetics are regulated by autophagy, a prevalent degradation mechanism whose role in brain development remains poorly understood. With surprising specificity, autophagosomes form in synaptogenic filopodia, followed by filopodial collapse. Altered autophagic degradation of synaptic building material quantitatively regulates synapse formation as shown by computational modeling and genetic experiments. Increased filopodial stability enables incorrect synaptic partnerships. Hence, filopodial autophagy restricts inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity.


Assuntos
Autofagia , Encéfalo/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Pseudópodes/fisiologia , Sinapses/fisiologia , Animais , Atenção , Axônios/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cinética , Mosaicismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteólise , Transmissão Sináptica/fisiologia
4.
Science ; 367(6482): 1112-1119, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139539

RESUMO

The genome versus experience dichotomy has dominated understanding of behavioral individuality. By contrast, the role of nonheritable noise during brain development in behavioral variation is understudied. Using Drosophila melanogaster, we demonstrate a link between stochastic variation in brain wiring and behavioral individuality. A visual system circuit called the dorsal cluster neurons (DCN) shows nonheritable, interindividual variation in right/left wiring asymmetry and controls object orientation in freely walking flies. We show that DCN wiring asymmetry instructs an individual's object responses: The greater the asymmetry, the better the individual orients toward a visual object. Silencing DCNs abolishes correlations between anatomy and behavior, whereas inducing DCN asymmetry suffices to improve object responses.


Assuntos
Encéfalo/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Individualidade , Neurogênese , Campos Visuais/fisiologia , Vias Visuais/crescimento & desenvolvimento , Animais , Encéfalo/anatomia & histologia , Drosophila melanogaster/genética , Variação Genética , Orientação/fisiologia , Vias Visuais/anatomia & histologia
5.
Curr Opin Neurobiol ; 63: 1-8, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32036252

RESUMO

Two neurons can only form a synapse if their axonal and dendritic projections meet at the same time and place. While spatiotemporal proximity is necessary for synapse formation, it remains unclear to what extent the underlying positional strategies are sufficient to ensure synapse formation between the right partners. Many neurons readily form synapses with wrong partners if they find themselves at the wrong place or time. Minimally, restricting spatiotemporal proximity can prevent incorrect synapses. Maximally, restricting encounters in time and space could be sufficient to ensure correct partnerships between neurons that can form synapses promiscuously. In this review we explore recent findings on positional strategies during developmental growth that contribute to precise outcomes in brain wiring.


Assuntos
Neurônios , Sinapses , Axônios , Encéfalo , Neurogênese
6.
Curr Biol ; 28(8): R471-R486, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29689231

RESUMO

Defects in membrane trafficking are hallmarks of neurodegeneration. Rab GTPases are key regulators of membrane trafficking. Alterations of Rab GTPases, or the membrane compartments they regulate, are associated with virtually all neuronal activities in health and disease. The observation that many Rab GTPases are associated with neurodegeneration has proven a challenge in the quest for cause and effect. Neurodegeneration can be a direct consequence of a defect in membrane trafficking. Alternatively, changes in membrane trafficking may be secondary consequences or cellular responses. The secondary consequences and cellular responses, in turn, may protect, represent inconsequential correlates or function as drivers of pathology. Here, we attempt to disentangle the different roles of membrane trafficking in neurodegeneration by focusing on selected associations with Alzheimer's disease, Parkinson's disease, Huntington's disease and selected neuropathies. We provide an overview of current knowledge on Rab GTPase functions in neurons and review the associations of Rab GTPases with neurodegeneration with respect to the following classifications: primary cause, secondary cause driving pathology or secondary correlate. This analysis is devised to aid the interpretation of frequently observed membrane trafficking defects in neurodegeneration and facilitate the identification of true causes of pathology.


Assuntos
Doenças Neurodegenerativas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Movimento Celular , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo , Transporte Proteico
7.
Curr Biol ; 28(7): 1027-1038.e4, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29551411

RESUMO

Neurons are highly polarized cells that require continuous turnover of membrane proteins at axon terminals to develop, function, and survive. Yet, it is still unclear whether membrane protein degradation requires transport back to the cell body or whether degradation also occurs locally at the axon terminal, where live observation of sorting and degradation has remained a challenge. Here, we report direct observation of two cargo-specific membrane protein degradation mechanisms at axon terminals based on a live-imaging approach in intact Drosophila brains. We show that different acidification-sensing cargo probes are sorted into distinct classes of degradative "hub" compartments for synaptic vesicle proteins and plasma membrane proteins at axon terminals. Sorting and degradation of the two cargoes in the separate hubs are molecularly distinct. Local sorting of synaptic vesicle proteins for degradation at the axon terminal is, surprisingly, Rab7 independent, whereas sorting of plasma membrane proteins is Rab7 dependent. The cathepsin-like protease CP1 is specific to synaptic vesicle hubs, and its delivery requires the vesicle SNARE neuronal synaptobrevin. Cargo separation only occurs at the axon terminal, whereas degradative compartments at the cell body are mixed. These data show that at least two local, molecularly distinct pathways sort membrane cargo for degradation specifically at the axon terminal, whereas degradation can occur both at the terminal and en route to the cell body.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Polaridade Celular , Células Cultivadas , Proteólise , Proteínas SNARE/metabolismo
8.
Dev Neurobiol ; 78(3): 283-297, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28884504

RESUMO

Membrane protein turnover and degradation are required for the function and health of all cells. Neurons may live for the entire lifetime of an organism and are highly polarized cells with spatially segregated axonal and dendritic compartments. Both longevity and morphological complexity represent challenges for regulated membrane protein degradation. To investigate how neurons cope with these challenges, an increasing number of recent studies investigated local, cargo-specific protein sorting, and degradation at axon terminals and in dendritic processes. In this review, we explore the current answers to the ensuing questions of where, what, and when membrane proteins are degraded in neurons. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 283-297, 2018.


Assuntos
Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Proteólise , Animais , Humanos
9.
Cell ; 162(1): 120-33, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26119341

RESUMO

Complicated neuronal circuits can be genetically encoded, but the underlying developmental algorithms remain largely unknown. Here, we describe a developmental algorithm for the specification of synaptic partner cells through axonal sorting in the Drosophila visual map. Our approach combines intravital imaging of growth cone dynamics in developing brains of intact pupae and data-driven computational modeling. These analyses suggest that three simple rules are sufficient to generate the seemingly complex neural superposition wiring of the fly visual map without an elaborate molecular matchmaking code. Our computational model explains robust and precise wiring in a crowded brain region despite extensive growth cone overlaps and provides a framework for matching molecular mechanisms with the rules they execute. Finally, ordered geometric axon terminal arrangements that are not required for neural superposition are a side product of the developmental algorithm, thus elucidating neural circuit connectivity that remained unexplained based on adult structure and function alone.


Assuntos
Axônios , Olho Composto de Artrópodes/inervação , Simulação por Computador , Drosophila/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/fisiologia , Algoritmos , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Drosophila/citologia , Drosophila/fisiologia , Cones de Crescimento
10.
J Neurogenet ; 28(3-4): 216-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24912630

RESUMO

Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically "hard-wired" synaptic connectivity in the brain.


Assuntos
Evolução Biológica , Neurônios/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Sinapses/fisiologia , Vias Visuais/fisiologia , Animais , Axônios/fisiologia , Vias Visuais/crescimento & desenvolvimento
11.
Mol Neurodegener ; 8: 23, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23829673

RESUMO

Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca(2+)) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Sinapses/metabolismo , Sinapses/patologia , Animais , Membrana Celular/metabolismo , Humanos , Degeneração Neural/fisiopatologia
12.
J Cell Biol ; 198(1): 23-35, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22753898

RESUMO

Presenilin (PSEN) deficiency is accompanied by accumulation of endosomes and autophagosomes, likely caused by impaired endo-lysosomal fusion. Recently, Lee et al. (2010. Cell. doi: http://dx.doi.org/10.1016/j.cell.2010.05.008) attributed this phenomenon to PSEN1 enabling the transport of mature V0a1 subunits of the vacuolar ATPase (V-ATPase) to lysosomes. In their view, PSEN1 mediates the N-glycosylation of V0a1 in the endoplasmic reticulum (ER); consequently, PSEN deficiency prevents V0a1 glycosylation, compromising the delivery of unglycosylated V0a1 to lysosomes, ultimately impairing V-ATPase function and lysosomal acidification. We show here that N-glycosylation is not a prerequisite for proper targeting and function of this V-ATPase subunit both in vitro and in vivo in Drosophila melanogaster. We conclude that endo-lysosomal dysfunction in PSEN(-/-) cells is not a consequence of failed N-glycosylation of V0a1, or compromised lysosomal acidification. Instead, lysosomal calcium storage/release is significantly altered in PSEN(-/-) cells and neurons, thus providing an alternative hypothesis that accounts for the impaired lysosomal fusion capacity and accumulation of endomembranes that accompanies PSEN deficiency.


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Homeostase/fisiologia , Lisossomos/metabolismo , Presenilina-1/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Fibroblastos/metabolismo , Glicosilação , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
13.
Adv Exp Med Biol ; 628: 115-36, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18683642

RESUMO

The optic lobes comprise approximately half of the fly's brain. In four major synaptic ganglia, or neuropils, the visual input from the compound eyes is received and processed for higher order visual functions like motion detection and color vision. A common characteristic of vertebrate and invertebrate visual systems is the point-to-point mapping of the visual world to synaptic layers in the brain, referred to as visuotopy. Vision requires the parallel extraction of numerous parameters in a visuotopic manner. Consequently, the optic neuropils are arranged in columns and perpendicularly oriented synaptic layers that allow for the selective establishment of synapses between columnar neurons. How this exquisite synaptic specificity is established during approximately 100 hours of brain development is still poorly understood. However, the optic lobe contains one of the best characterized brain structures in any organism-both anatomically and developmentally. Moreover, numerous molecules and their function illuminate some of the basic mechanisms involved in brain wiring. The emerging picture is that the development of the visual system of Drosophila is (epi-)genetically hard-wired; it supplies the emerging fly with vision without requiring neuronal activity for fine tuning of neuronal connectivity. Elucidating the genetic and cellular principles by which gene activity directs the assembly of the optic lobe is therefore a fascinating task and the focus of this chapter.


Assuntos
Drosophila/anatomia & histologia , Drosophila/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Animais , Drosophila/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Células Fotorreceptoras de Invertebrados/anatomia & histologia , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Vias Visuais/anatomia & histologia , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologia , Percepção Visual/fisiologia
14.
J Biol Chem ; 283(1): 294-300, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17933871

RESUMO

The V(0) complex forms the proteolipid pore of a vesicular ATPase that acidifies vesicles. In addition, an independent function in membrane fusion has been suggested in vacuolar fusion in yeast and synaptic vesicle exocytosis in fly neurons. Evidence for a direct role in secretion has also recently been presented in mouse and worm. The molecular mechanisms of how the V(0) components might act or are regulated are largely unknown. Here we report the identification and characterization of a calmodulin-binding site in the large cytosolic N-terminal region of the Drosophila protein V100, the neuron-specific V(0) subunit a1. V100 forms a tight complex with calmodulin in a Ca(2+)-dependent manner. Mutations in the calmodulin-binding site in Drosophila lead to a loss of calmodulin recruitment to synapses. Neuronal expression of a calmodulin-binding deficient V100 uncovers an incomplete rescue at low levels and cellular toxicity at high levels. Our results suggest a vesicular ATPase V(0)-dependent function of calmodulin at synapses.


Assuntos
Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Cromatografia em Gel , Drosophila/citologia , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Imuno-Histoquímica , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Sinapses/metabolismo , Triptofano/química , Triptofano/genética , Triptofano/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
15.
Cell ; 123(7): 1173-4, 2005 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-16377554

RESUMO

Systems biology has become a fashionable label for a new generation of large-scale experiments. This essay explores how classical approaches such as forward genetics fit into this emerging framework.


Assuntos
Genética/tendências , Biologia de Sistemas/tendências , Animais , Humanos
16.
Neuron ; 35(2): 291-306, 2002 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12160747

RESUMO

Aplysia VAP-33 (VAMP-associated protein) has been previously proposed to be involved in the control of neurotransmitter release. Here, we show that a Drosophila homolog of VAP-33, DVAP-33A, is localized to neuromuscular junctions. Loss of DVAP-33A causes a severe decrease in the number of boutons and a corresponding increase in bouton size. Conversely, presynaptic overexpression of DVAP-33A induces an increase in the number of boutons and a decrease in their size. Gain-of-function experiments show that the presynaptic dose of DVAP-33A tightly modulates the number of synaptic boutons. Our data also indicate that the presynaptic microtubule architecture is severely compromised in DVAP-33A mutants. We propose that a DVAP-33A-mediated interaction between microtubules and presynaptic membrane plays a pivotal role during bouton budding.


Assuntos
Proteínas de Transporte/isolamento & purificação , Proteínas de Drosophila , Drosophila melanogaster/crescimento & desenvolvimento , Dosagem de Genes , Proteínas de Membrana/isolamento & purificação , Microtúbulos/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Junção Neuromuscular/crescimento & desenvolvimento , Terminações Pré-Sinápticas/metabolismo , Proteínas de Transporte Vesicular , Animais , Transporte Axonal/genética , Proteínas de Transporte/genética , Diferenciação Celular/fisiologia , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Testes Genéticos , Imuno-Histoquímica , Proteínas de Insetos/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Microscopia Eletrônica , Microtúbulos/ultraestrutura , Dados de Sequência Molecular , Mutação/genética , Sistema Nervoso/metabolismo , Sistema Nervoso/ultraestrutura , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/fisiologia , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...